ATP-type DNA ligase requires other proteins for its activity in vitro and its operon components for radiation resistance in Deinococcus radiodurans in vivo.

نویسندگان

  • Swathi Kota
  • Vidya A Kamble
  • Yogendra S Rajpurohit
  • Hari S Misra
چکیده

A multiprotein DNA processing complex isolated from Deinococcus radiodurans contains the DNA repair protein PprA, an ATP-type DNA repair ligase (LigB) encoded by the drB0100 gene, and protein kinase activity. An ATP-dependent DNA end-joining activity was detected in the complex. To elucidate the function of the drB0100 gene, we generated the deletion mutant for the DR_B0100 ORF. The mutant exhibited a nearly 2-log cycle reduction in growth rate when exposed to a 10,000 Gray dose of γ-radiation, and a significant loss in mitomycin C and methylmethane sulphonate tolerance as compared with wild type. Functional complementation of these phenotypes required the wild-type copy of drB0100 along with other genes such as drb0099 and drb0098, organized downstream in the operon. The in vitro DNA ligase activity of LigB was stimulated severalfold by PprA in the presence of the recombinant DRB0098 protein. However, this activity did not improve when PprA was substituted with purified DRB0099 protein or when DRB0098 protein was substituted with the DRB0099 protein in the presence of PprA in solution. These results suggest that PprA and DRB0098 protein are required for LigB function. Furthermore, they also suggest that the LigB operon components contribute to radiation resistance and double-strand break (DSB) repair in D. radiodurans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-function study of deinococcal serine/threonine protein kinase implicates its kinase activity and DNA repair protein phosphorylation roles in radioresistance of Deinococcus radiodurans.

The DR2518 (RqkA) a eukaryotic type serine/threonine protein kinase in Deinococcus radiodurans was characterized for its role in bacterial response to oxidative stress and DNA damage. The K42A, S162A, T169A and S171A mutation in RqkA differentially affected its kinase activity and functional complementation for γ radiation resistance in Δdr2518 mutant. For example, K42A mutant was completely in...

متن کامل

Ppra: an Important Protein of Radiation Resistance in Deinococcus Stimulates Catalase Activity in Escherichia Coli

Deinococcus radiodurans is characterized by its exceptional capacity to tolerate the effects of various DNA damaging agents due to presence of the extraordinary DNA repair mechanism. DNA double strand break repair in Deinococcus radiodurans follows biphasic kinetics. The phase I, a RecA independent phase appears to be a DNA protective and preparatory phase for RecA dependent phase II repair. Pp...

متن کامل

The SbcCD complex of Deinococcus radiodurans contributes to radioresistance and DNA strand break repair in vivo and exhibits Mre11-Rad50 type activity in vitro.

Deinococcus radiodurans lacks a homologue of the recB and recC genes, and the sbcA/B genes, of Escherichia coli. Thus, DNA strand break repair in Deinococcus proceeds by pathways that do not utilize these proteins. Unlike E. coli, the absence of recBC and sbcA/sbcB, and presence of only sbcC and sbcD in Deinococcus, indicates an enigmatic role of SbcCD in this bacterium. Studies on sbcCD mutati...

متن کامل

Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans.

Deinococcus radiodurans shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. radR is located upstream of drB0090, which encodes a putative sensor histidine kinase (RadS) on the...

متن کامل

FrnE, a cadmium-inducible protein in Deinococcus radiodurans, is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo.

Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ~15- and ~3-fold, resp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry and cell biology = Biochimie et biologie cellulaire

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2010